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Abstract

It is demonstrated that the critical Marangoni number for transition from the no!motion "conduction# to the motion
state in the MarangoniÐBe�nard problem of an in_nite ~uid layer heated from below and cooled from above can be
increased through the use of feedback control strategies e}ecting small perturbations in the boundary data[ Þ 0887
Elsevier Science Ltd[ All rights reserved[

Nomenclature

The appropriate dimensions accompany dimensional
quantities[ All other quantities are nondimensional[

a wave number\ a �zk1
x¦k1

y

Cp speci_c heat at constant pressure ðkJ kg−0 K−0Ł
d liquid layer|s height ðmŁ
D di}erential operator D � d:dz
` gravitational acceleration ðm s−1Ł
H curvature of the free interface
k thermal conductivity ðW m−0 K−0Ł
kx\ ky wave numbers in the x and y directions
K controller gain
n normal unit vector
N amplitude of surface deformation
p pressure
S surface tension
t time
T dimensional temperature ðKŁ
x\ y horizontal Cartesian coordinates
z vertical coordinate
u velocity vector
u\ v\ w velocity components in the x\ y\ z directions
W vertical velocity amplitude[

Greek symbols
b the opposite of the vertical temperature gradient
ðK m−0Ł

� Tel[] 990 104 787 7252^ Fax] 990 104 462 5223^ E!mail]
bauÝeniac[seas[upenn[edu

G stress tensor
h location of the free surface
u nondimensional temperature
u? nondimensional temperature|s deviation from its
conductive value
U temperature amplitude
k � k:rCp thermal di}usivity
n kinematic viscosity ðm1 s−0Ł
r density ðkg m−2Ł
s growth rate
t tangent vector[

Subscripts
A atmosphere
c critical
I imaginary part
F free surface
R real part
r relative
w solid surface[

Superscripts
� denotes dimensional quantities[ The same quantities
without the "�# are nondimensional[

Nondimensional `roups
Bi � hd:k Biot number
Bo � r`d 1

f:S�9 � `d 2
f:nk C Bond number

C � rnk:S�9d crispation number
F � `d2:nk Galileo number
M �"−dS�:dT#bd1:rnk Marangoni number
Pr � n:k Prandtl number[
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0[ Introduction

The ability to control complex convective ~ow patterns
is important in both technology and fundamental science[
In many technological processes\ the naturally occurring
~ow patterns may not be the optimal ones[ By controlling
the ~ow\ one may be able to optimize the process[ The
ability to stabilize otherwise nonstable states may also
assist one in gaining deeper insights into the dynamics of
~ows[

In prior experimental and theoretical investigations ð0Ð
4Ł\ it was demonstrated that through the use of linear
and nonlinear control strategies\ chaotic convection in a
thermal convection loop could be suppressed[ Similarly\
Tang and Bau ð5Ð01Ł\ Tang ð02Ł\ and Howle ð02Ð04Ł have
shown that the critical Rayleigh number for the onset
of convection in the RayleighÐBe�nard problem can be
signi_cantly delayed[ For example\ Tang and Bau ð09\
01Ł microfabricated arrays of thermal actuators on the
heated surface[ The actuators modi_ed the heated sur!
face|s temperature or heat ~ux in proportion to the devi!
ation of measured interior temperatures from desired\
conductive values[ With this control strategy\ they were
able to maintain a no!motion state under conditions
when\ in the absence of a controller\ motion would occur[
In this paper\ a similar control strategy is applied to
stabilize the no!motion state of the MarangoniÐBe�nard
problem[ Although other actuation methods are possible
and may provide better performance than the thermal
actuation\ the thermal actuation was chosen for study
because it is relatively easy to implement in practice ð09Ł[

The problem of suppressing cellular convection in the
MarangoniÐBe�nard problem has attracted some interest
in the literature[ Or and Kelly ð05\ 06Ł used open loop
control and proposed delaying the onset of cellular con!
vection in the MarangoniÐBe�nard problem by causing
the ~uid in the layer to oscillate slowly about a zero mean
with out!of!phase\ two horizontal velocity components[
Recently\ Or et al[ ð07Ł studied theoretically the use of
the feedback control strategies similar to those proposed
by Tang and Bau ð5Ð01Ł in the RayleighÐBe�nard problem
to stabilize long wavelength instabilities in the Mar!
angoniÐBe�nard convection[ They also utilized a non!
linear control similar to the one employed by Yuen and
Bau ð3Ł in the thermal convection loop problem to render
the subcritical bifurcation supercritical[

In this paper\ I utilize a linear controller to delay the
onset of instability[ The analysis is valid for all wave!
lengths and it takes into account bifurcations both into
time!independent and oscillatory modes[ The objective
of the controller is to delay the onset of convection while
maintaining a state of no motion in the ~uid layer[

1[ The mathematical model

Consider an in_nite\ horizontal liquid layer of thick!
ness "d# bounded from below "z � 9# by an isothermal\

solid surface at temperature\ Tw[ The other surface at
z � d is free\ and it exchanges heat with a uniform tem!
perature atmosphere at TA[ In the absence of motion\ the
temperature of the free surface is uniform at
TA ³ TF ³ Tw and the temperature gradient is per!
pendicular to the free surface "the MarangoniÐBe�nard
problem#[ Heat is transmitted from the free surface to
the atmosphere by Newton|s law of cooling[

−
1u

1n
� Biu "0#

where u �"T−TA#:bd is the nondimensional tem!
perature^ n is a unit vector perpendicular to the free
surface^ Bi � hd:k is the Biot number^ h is a constant and
uniform heat transfer coe.cient^ k is the liquid|s thermal
conductivity^ and

b �
Tw−TF

d
�

Bi"Tw−TA#
d"0¦Bi#

"1#

is the opposite of the conductive temperature gradient[
The liquid is incompressible[ The velocity vector\

u � "u\ v\ w#\ satis_es the non!dimensional continuity
equation\

9 = u � 9 "2#

where u\ v\ w are the velocity components in the hori!
zontal x and y\ and the vertical z directions[ k:d is the
velocity scale[ k � k:"rCp# is the thermal di}usivity[ r

and Cp are\ respectively\ the liquid|s density and speci_c
heat at constant pressure[

The non!dimensional momentum equation]

Pr−00
1u

1t
¦u =9u1� −9p−Fe¼z¦91u "3#

where p is the pressure[ Pr � n:k is the Prandtl number[
The time "t# scale is d1:k and the pressure scale is rkn:d1[
F � `d2:"nk# is the Galileo number[ Buoyancy forces are
neglected[ The neglecting of buoyancy can be justi_ed
when either the layer is very thin or under microgravity
conditions[

The energy equation is]

1u

1t
¦u = 9u � 91u[ "4#

The location of the perturbed free surface is given by

z � 0¦h"x\ y\ t#[ "5#

The kinematic condition requires that the vertical com!
ponent of the velocity\ w\ satis_es]

w � 0
1

1t
¦u

1

1x
¦n

1

1y1 h[ "7#

In formulating the dynamic conditions at the interface\
it is assumed that the overlying gas| viscosity can be
neglected\ the interface has negligible mass and the liquid
properties at the interface are the same as the bulk liquid
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properties[ The non!dimensional surface tension "S# is
expanded into a Taylor series in terms of the temperature\

S � C−0−Mu¦O"u1# "8#

where the surface tension was normalized using the group
rnk:d[

M � 0−
dS�
dT 1

bd1

rnk

is the Marangoni number and S� is the dimensional sur!
face tension[ C � rnk:"S�Fd# is the crispation number[
S�F and C−0 are\ respectively\ the dimensional and non!
dimensional surface tensions at the conductive surface
temperature\ TF[

The free surface stress conditions at z � 0¦h"x\ y\ t#
are ð08Ł]

n¼ = G = n¼ � 1H"C−0−Mu# "09#

and

t"a# = G = n¼ � −t"a#M9u[ "00#

In the above\ H is the mean curvature of the interface\

1H � 0
11h

1x100¦0
1h

1y1
1

1
¦

11h

1y100¦0
1h

1x1
1

1100¦0
1h

1x1
1

¦0
1h

1y1
1

1
−2:1

"01#

G is the stress tensor for an incompressible liquid\

Gi\ j � −pdi\ j¦0
1ui

1xj

¦
1uj

1xi1 "02#

and the indices 0\ 1\ and 2 denote respectively\ the x\ y
and z directions[ t"a#\ a � 0\ 1\ are orthonormal tangent
vectors to the free surface[

In the classical MarangoniÐBe�nard problem\ the
boundary conditions at the solid surface\ z � 9\ are
nonslip\ u � 9\ and uniform temperature\

u"x\ y\ 9# �
0¦Bi

Bi
[ "03#

Equations "0#Ð"03# admit the no!motion state\

u � 9^ u"x\ y\ z# �
0¦Bi

Bi
−z^ p � pA¦F"0−z# "04#

where pA is the nondimensional pressure of the
atmosphere[

The linear stability of the no!motion state has been
investigated by many researchers who computed the criti!
cal Marangoni number\

Mc � M"a\ Bi\ Bo\ C# "05#

where a is the wave number "which is de_ned later in the
text# and

Bo �
r`d1

f

S�9
�

`d2
f

nk
C

is the Bond number[ When M ³ Mc\ equation "04# is
linearly stable[ The objective of this paper is to dem!
onstrate that with the use of feedback control strategies\
it is possible to a}ect the stability characteristics of the
no!motion state[ In other words\ we wish to maintain a
stable no!motion state under conditions in which such a
state would otherwise be nonstable[

2[ The control strategy

In order to a}ect the stability of the ~uid through the
use of feedback control\ it is envisioned that the solid
surface is equipped with a large number of individually
controlled actuators[ Various types of actuators can be
used[ For instance\ Tang and Bau ð09Ł developed thermal
actuators to stabilize the no!motion state of the Ray!
leighÐBe�nard problem[ One can also envision actuators
that induce a vertical velocity component at the heated
surface "i[e[\ suction and blowing#[

Sensors detect the departure of the ~uid from the
desired\ conductive state and they direct the actuators to
take action so as to suppress unwanted disturbances[ One
can utilize a variety of sensors such as ones capable of
detecting the shear stress at the solid surface\ the level of
the free surface\ or the departure of the surface tem!
perature from its conductive value[ The latter two
measurements can be carried out optically and non!
intrusively[ Since thermal actuation and optical sensing
of surface temperature are relatively easy to implement\
for concreteness\ the discussion here focuses on these
types of sensors and actuators[ For simplicity\ we assume
that the sensors and actuators are continuously dis!
tributed and that each sensor directs an actuator installed
directly beneath it at the same "x\ y# location[ The sensor
detects the deviation of the free surface temperature from
its conductive value[ The actuator modi_es the heated
surface temperature according to the rule]

u"x\ y\ 9\ t# �
0¦Bi

Bi
−K0u"x\ y\ 0\ t#−

0
Bi1 "06#

where K is the scalar controller gain[ In general\
K � KP¦KD d:dt¦KIÐt

9 dt can be a proportional!di}er!
ential!integral controller[ Here\ the focus is only on pro!
portional control[

Equation "06# can be rewritten more conveniently as

u?"x\ y\ 9\ t# � −Ku?"x\ y\ 0\ t# "07#

where u? is the deviation of the ~uid|s temperature from
its conductive value[

The continuous distribution of the sensors and actu!
ators is assumed for mathematical convenience\ and it is
not necessary for the practical application of the control!
ler[ For example\ in their experimental and numerical
work\ using a _nite number of discrete sensors and actu!
ators\ Tang and Bau ð09\ 00Ł succeeded in suppressing



H[H[ Bau:Int[ J[ Heat Mass Transfer 31 "0888# 0216Ð02300229

RayleighÐBe�nard cells in an upright cylinder[ It is likely
that the same will be true for the case of the MarangoniÐ
Be�nard convection in a _nite size container[ Although in
this paper the analysis is carried out for an in_nite ~uid
layer\ the results are likely to indicate what one might
expect to observe when studying _nite size containers[

The control strategy in equation "07# is not the only
one possible[ For example\ one can envision control al!
gorithms in which all the sensors communicate with all
the actuators\ i[e[\

u?"x\ y\ 9\ t# � −ggx\y

K"x\ y#u?"x\ y\ 0\ t# dx dy

where K"x\ y# is a periodic control gain function[
However\ since our objective is simply to demonstrate
that the system can be controlled\ the simpler control
strategy\ equation "07#\ in which K is a scalar will be
used[

To understand how the controller operates\ it is useful
to review brie~y the physical mechanisms that cause the
Be�nardÐMarangoni instability[ The no!motion state is
an equilibrium state "a _xed point# of the uncontrolled
system[ Assume that as a result of a random disturbance\
a hot spot is formed at some point on the free surface[
Since "usually# the surface tension decreases with tem!
perature\ the surface tension at the hot spot location will
be smaller than that at neighboring locations[ As a result\
there will be surface traction away from the hot spot\
giving rise to a convective current[ The convected ~uid
will be replaced by warmer ~uid rising from beneath the
surface[

For small Marangoni numbers\ the convective motion
is su.ciently slow to allow heat di}usion to equalize the
rising ~uid|s temperature with that of its surroundings so
as to remove the excess temperature and prevent the
disturbance from manifesting itself[ Under these
conditions\ the hot spot will eventually disappear and the
no!motion state will be reinstated[

For supercritical Marangoni numbers\ M × Mc\ the
disturbance!induced motion is su.ciently fast so that the
heat dissipating mechanisms in the ~uid do not have
su.cient time to equilibrate the temperature of the rising
~uid with its surroundings[ As a result\ the surface dis!
turbance is manifested and convection will prevail[

Our controller acts to enhance the dissipative mech!
anisms in the ~uid[ The controller senses when a ~uid
column is about to rise and directs the actuator to drop
slightly the heated surface temperature beneath the rising
column[ In turn\ the rising column will carry less excess
temperature than in the absence of the controller[ As a
result\ the surface tension!induced currents will be
weaker\ allowing ample time for heat dissipation to equa!
lize the surface temperature and restore the no!motion
state[ The control signal is proportional to the magnitude
of the disturbances[ When disturbances are small "in_ni!
tesimal#\ the modulations of the heated surface tem!

perature will also be in_nitesimal[ In other words\ the
controller a}ects the dynamics of the system without
signi_cantly a}ecting the bottom surface temperature[

3[ Linear stability of the controlled problem

Standard methods of linear stability analysis are used
to determine the e}ect of the controller gain\ K\ on the
critical Marangoni number at the onset of convection[
The linear stability of the uncontrolled problem has
attracted considerable attention in the literature[ The lin!
ear stability of the no!motion state was _rst investigated
by Pearson ð19Ł who assumed an in_nite ~uid layer\ a
nondeformable surface\ and zero gravity[ The ~at surface
approximation is valid for a very large surface tension or
in the asymptotic limit of C : 9[ Pearson demonstrated
that there exists a critical Marangoni number\ MC\ so that
for M ³ MC\ the no!motion state is stable with respect to
small disturbances[ The magnitude of MC depends on the
heat transfer conditions "the Biot number# but not on
the Prandtl number[ For example\ for an isothermal hot
boundary and Bi : 9\ MC ½ 68[5[ Subsequently\ using
similar approximations to those used by Pearson\ Nield
ð10Ł and Takashima ð11Ł extended Pearson|s analysis to
include both buoyancy "Ra × 9# and surface tension
e}ects "the RayleighÐBe�nardÐMarangoni problem#[ In
his work\ Takashima ð11Ł also accounted for heat con!
duction in the underlying solid plate[ For M × MC\ time!
independent motion sets up[ We will refer to this convec!
tive motion as Pearson|s modes[

In their analysis\ both Pearson and Nield assumed
that the loss of stability occurs through a real\ simple
eigenvalue "the principle of exchange of stability is valid#[
Unlike the case of the onset of convection in the Ray!
leighÐBe�nard problem\ the linearized operator of the
Be�nardÐMarangoni problem is not self!adjoint and a rig!
orous proof of the validity of the principle of exchange
of stability is yet to be found[ Nevertheless\ in extensive
numerical experiments\ Vidal and Acrivos ð12Ł and Tak!
ashima ð13Ł found that in all the cases investigated\ when
surface deformation was neglected "C � 9#\ the principle
of exchange of stability was\ indeed\ valid[

The assumption of a non!deformable free surface was
_rst relaxed by Scriven and Sternling ð14Ł who accounted
for capillary waves "C × 9# but not gravity waves
"Bo � 9#[ Scriven and Sternling concluded that the criti!
cal Marangoni number MC : 9 as the disturbance wave
number a : 9[ In other words\ the no!motion state is
always unstable to disturbances with a very long wave!
length[ In a con_ned medium\ there will be a cut!o} wave
number "a0# due to the restrictive e}ect of the con_ning
boundaries that will lead to MC × 9[ Scriven and
Sternling|s analysis was modi_ed by Smith ð15Ł to include
surface gravity waves which were shown to have a sta!
bilizing e}ect[ Smith showed that the values of MC as
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predicted by Pearson are valid for situations when the
crispation number\ C\ is not large and Bo × 9[ When
C × 9\ Takashima ð16Ł and Gouesbet et al[ ð17Ł dem!
onstrated that for layers heated from below "M × 9# the
principle of exchange of stability is still valid[ They found\
however\ onset of oscillatory convection for negative
Marangoni numbers[

Here\ similar ideas are extended to the controlled prob!
lem[ The conservation equations and boundary con!
ditions are linearized about the no!motion\ conductive
state[ With the aid of a Taylor series expansion\ the
boundary conditions at the free interface are transformed
to z � 0 and the uniform temperature boundary con!
dition "03# at z � 9 is replaced with the controller rule\
equation "07#[

The vertical velocity and temperature are expanded
into normal modes]

2
w"x\ y\ z#

u?"x\ y\ z#

h"x\ y\ t# 3� 2
W"z#

U"z#

N 3 exp"i"kxx¦kyy#¦st#[ "08#

Upon substituting equation "08# into the linearized
equations\ we obtain a set of linear di}erential equations\

"sPr−0−"D1−a1##"D1−a1#W � 9 "19#

and

"s−"D1−a1##U � W "10#

where a1 � k1
x¦k1

y and the operator\ D � d:dz[ The
boundary conditions are]

W"0#−sN � 9 "11#

C"Pr−0s−"D1−2a1##DW"0#¦"Bo¦a1#a1N � 9

"12#

""D1¦a1##W"0#¦a1M"U"0#−N# � 9 "13#

"D¦Bi#U"0#−BiN � 9 "14#

W"9# � DW"9# � 9 "15#

and

U"9#¦KU"0# � 9[ "16#

4[ Stationary modes

In this section\ it is assumed that the principle of ex!
change of stability is valid and that the bifurcation occurs
from a conductive state to time!dependent convection[
In other words\ one can set s � 9[ Since in the uncon!
trolled case\ the principle of exchange of stability is valid\
this is also likely to be true for smaller controller gains[
This\ however\ may not be the case for relatively large
controller gains[ The possible occurrence of a bifurcation
into oscillatory convection "Hopf bifurcation# is
addressed in the next section[ The homogeneous equa!
tions "19#Ð"16# with s � 9 constitute an eigenvalue prob!

lem for the critical Marangoni number[ By substituting
the general solution of equations "19# and "10# into the
boundary conditions "11#Ð"16# and requiring the exis!
tence of nontrivial solutions\ one obtains the critical Mar!
angoni number]

M�

3a"a1¦Bo#"aK¦a cosh"a#¦Bi sinh"a##"1a−sinh"1a##

"a1¦Bo#"a2 cosh"a#−sinh2"a##−7a4C"K¦cosh"a##
[

"17#

The tedious task of carrying out the algebraic manipu!
lation required to obtain equation "17# was greatly eased
with the aid of Mathematica ð18Ł[ When one removes
the feedback controller by setting K � 9\ equation "17#
reduces to the expression given by Takashima ð15Ł[ When
one sets both K � 9 and C � 9\ one obtains Pearson|s
ð19Ł classical expression[ When the principle of exchange
of stability is valid\ the critical Marangoni number is
independent of the Prandtl number[ Thus\ the results of
this section are applicable to all Prandtl numbers[

When C ³ C�\ where

C� �
"a1¦Bo#

05a3Bi
"cosh"1a#−0−1a2 coth"a## "18#

"1M:1K#K�9 × 9 and small controller gains have a sta!
bilizing e}ect[ When "a# is small\ C� ¼ a1Bo:"019Bi#[ As
"a# increases so does C� "monotonically#[ In other words\
when C � 9\ small controller gains always lead to an
increase in the magnitude of M[ When C × 9\ there may
be circumstances\ in particular at small wave numbers
"long wavelengths# in which the controller may have a
destabilizing e}ect[

4[0[ The effect of the controller on Pearson|s modes
"C � 9#

The Pearson modes evolve when no surface defor!
mation occurs\ i[e[\ the surface tension S9 : � or the
crispation number C : 9[ When Bi � Bo � C � 9\ Fig[
0 depicts the critical Marangoni number at the onset of
convection as a function of the wave number\ a\ for
controller gains] K � 9\ 4 and 19[ When C � 9\ the critical
Marangoni number is in_nity at a � 9[ As a decreases\
the Marangoni number decreases\ attains a minimum at
some critical wave number\ and increases again[

In the absence of the controller\ K � 9\ the classical
curve is reproduced and the critical Marangoni number
attains the minimum of 68[5956 at a � 0[882[ As the
controller gain\ K\ increases\ the marginal stability curves
shift upwards\ illustrating that the controller stabilizes
the no!motion state for all wave numbers[ The critical
Marangoni number\ Mc � Mina×9"M#\ increases mon!
otonically as the controller gain K increases[ Figure 0
also illustrates that as K increases\ the loss of stability
occurs at larger wave numbers "shorter wavelengths#[ In
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Fig[ 0[ The critical Marangoni number at the onset of convection is depicted as a function of the wave number\ a\ and controller gains]
K � 9\ 4 and 19^ Bi � Bo � C � 9[

other words\ the wave number that corresponds to the
{most dangerous| mode increases as the controller gain
increases[

Figure 1 depicts the normalized critical Marangoni
number\ Mr\ as a function of the controller gain for Biot
numbers Bi � 9\ 9[4 and 4[ In Fig[ 1\ the Marangoni
number was normalized with the critical Marangoni
number in the absence of control and at the same Biot
number\ i[e[\

Mr �
"M#with control

"M#without control

[

For example\ when Bi � 4\ the Marangoni number was
normalized with 149[5\ which is the critical Marangoni
number in the absence of control[

In the absence of control\ the critical Marangoni num!
ber increases nearly linearly as the Biot number increases[
This is because high Biot numbers provide a more
e.cient mechanism for the dissipation of thermal dis!
turbances[ As the Biot number increases\ higher con!
troller gains are needed to obtain the same relative change
in the critical Marangoni number[ For instance\ when
Bi � 9\ a controller gain of 4 increases the critical Mar!
angoni number from 68[5 "K � 9# to 033[6\ a 071)
increase[ When Bi � 0\ to increase the critical Marangoni
number from 005[0 "K � 9# to 109[8\ a 071) increase\ a
controller gain of 8[0 is needed[

In this subsection\ it was demonstrated that in the case
of the crispation number being equal to zero "the free

interface remains ~at#\ the controller can successfully
suppress the Pearson modes and maintain a no!motion
state under conditions in which\ in the absence of the
controller\ motion would occur[ In the next subsection\
the requirement that C � 9 is relaxed and the case of a
deforming interface is investigated[

4[1[ C � 9\ Bo � 9

The case of C × 9 and Bond number\ Bo � 9 "zero
gravity#\ is investigated in this section[ When C � 9[990\
Fig[ 2 depicts the critical Marangoni number at the onset
of convection as a function of the wave number when the
controller gains are K � 9\ 4 and 09[ In Fig[ 2\
Bi � Bo � 9[ The situation here is signi_cantly di}erent
than the case of C � 9 "Fig[ 0#[ At a � 9 "very long
wavelengths#\ the critical Marangoni number is zero[ As
a increases\ the Marangoni number increases\ attains a
maximum\ declines to a minimum and then increases
again[ For a truly in_nite layer\ the minimum of the
Marangoni number is zero and a no!motion\ conductive
state does not exist[ The controller is not e}ective at the
wave number a � 9[ In any practical situation\ however\
the layer will be con_ned in a _nite size container\ and
very long wavelengths "small values of a# will not be
admissible[ In other words\ in a con_ned container\ the
admissible wave numbers are restricted to some a × a0\
say\ where the magnitude of a0 depends on the geometry



H[H[ Bau:Int[ J[ Heat Mass Transfer 31 "0888# 0216Ð0230 0222

Fig[ 1[ The normalized Marangoni number is depicted as a function of the controller gain for Bi � 9\ 9[4 and 4^ Bo � C � 9[

Fig[ 2[ The critical Marangoni number is depicted as a function of the wave number\ a\ for K � 9\ 4 and 09^ Bi � Bo � 9 and C � 9[990[
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of the con_ning vessel[ When a × a0 × 9\ the controller
is e}ective\ and it is capable of increasing the magnitude
of the critical Marangoni number[

To examine more closely the dependence of the critical
Marangoni number on a in the vicinity of a � 9\ it is
convenient to expand equation "17# into a Taylor series
in terms of a\ i[e[\

M ½ 0
1
21

Bo"0¦Bi¦K#
C"0¦K#

¦

C"019"0¦Bi#¦7Bo"2−1Bi#¦K"019"1¦Bi#¦Bo

×"37¦33Bi##¦13K1"4¦Bo##−Bo1"0¦Bi¦K#

079C1"0¦K#1
a1

¦O"a3#[ "29#

0 1

The series expansion reveals that when Bo � 9 and C × 9\
M attains a zero value at a � 9[ When Bo � 9 and a × 9\
the controller is not e}ective[ Moreover\ when Bo × 9
and Bi � 9\ the controller gain does not appear in the
_rst term of the series expansion "29#[

4[2[ C × 9\ Bo × 9

When Bo × 9\ the critical Marangoni number at a � 9
is greater than zero[ When the sign of the coe.cient of

Fig[ 3[ The critical Marangoni number is depicted as a function of the wave number\ a\ for K � 9\ 4 and 09^ Bi � 9[0\ Bo � 9[0 and
C � 09−3[

the a1 term in the Taylor series expansion "29# is positive\
a � 9 corresponds to a local minimum of M[ When the
sign of the coe.cient of the a1 term in the Taylor series
expansion "29# is negative\ a � 9 corresponds to a local
maximum of M[ When

C ¾ C0 0
Bo1"0¦Bi¦K#

3"29"0¦Bi#¦Bo"5−3Bi#¦K"59¦29Bi

¦01Bo¦00BiBo#¦5K1"Bo¦4##

"20#

0 1

the coe.cient of a1 is negative and the minimum of M
occurs at a × 9[ When Bi � 9\

C0 �
Bo1

13"4¦Bo#"0¦K#
[

When Bi � 9[0\ Bo � 9[0 and C � 09−3\ Fig[ 3
depicts the critical Marangoni number as a function of
the wave number\ a\ for K � 9\ 4 and 09[ Witness that
when Bo × 9\ M no longer attains a zero value at a � 9[
When K � 9\ C ³ C0 and a � 9 is not a local minimum[
When K � 4 and 09\ C × C0 and a � 9 is a local "but not
a global# minimum[ In the vicinity of a � 9\ an increase in
the controller gain causes a decrease in the corresponding
critical Marangoni number[ When a × a0 × 9\ as the con!
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troller gain "K# increases\ the curve shifts upwards and\
most importantly\ the controller increases the magnitude
of the global minimum^ thus it has a stabilizing e}ect[

5[ Oscillatory modes

A general proof of the validity of the principle of ex!
change of stability is not available[ Through extensive
numerical experiments\ Vidal and Acrivos ð12Ł and Tak!
ashima ð13\ 16Ł demonstrated that in the uncontrolled
case\ the principle of exchange of stability holds for ~uid
layers heated from below[ By continuity\ one would
expect that when the controller gains are small\ the prin!
ciple of exchange of stability will be preserved[ Unfor!
tunately\ this may not be the case when the controller
gains are not small[ Large controller gains may induce
oscillatory instabilities[ In this section\ the possibility of
a bifurcation through an imaginary growth rate into
oscillatory\ time!dependent convection is brie~y inves!
tigated[

For brevity|s sake\ only the case of Pr � 0 is considered
here[ Although straightforward\ the expressions when
Pr � 0 are di}erent than those for Pr � 0 and for want
of space are not reproduced here[ The lack of an
expression for Pr � 0 does not present a practical limi!
tation since the expression given below can be used for
values of Pr very close to one "i[e[\ =Pr−0= × 9[90#[

The homogeneous equations "19#Ð"16# are solved
when s � 9[ Again\ the tedious algebraic manipulations
were conveniently and e.ciently carried out with the aid
of Mathematica ð18Ł[ The existence of nontrivial solu!
tions requires that the Marangoni number satisfy a
characteristic equation of the form]

M � MR¦iMI � −
0

a1

det"P#
det"Q#

"21#

where MR and MI are real[ For given Bi\ Bo\ C and K\
both MR and MI are functions of the complex growth
rate\ s � sR¦isI and the wave number "a#[

The components of the matrices P and Q are given
below[

P0\0 �
K
s 0

sinh"za1¦Pr−0s#

0−Pr−0
−

za1¦Pr−0s

a
sinh"a#1

P0\1 �
0

s"Pr−0−0#
"Pr−0¦K cosh"za1¦Pr−0s#

¦K"Pr−0−0# cosh"a##

P0\2 � K sinh"za1¦s#

P0\3 � 0¦K cosh"za1¦s#

P1\0 � Cza1¦Pr−0s""1a1¦Pr−0s# cosh"a#

−1a1 cosh"za1¦Pr−0s##

¦
a
s
"a1¦Bo#"za1¦Pr−0s sinh"a#

−a sinh"za1¦Pr−0s##

P1\1 � aC"za1¦Pr−0s"1aza1¦Pr−0s

×sinh"za1¦Pr−0s#−"1a1¦Pr−0s# sin"a###

¦
a1

s
""a1¦Bo# cosh"za1¦Pr−0s#−cosh"a##

P1\2 � 9

P1\3 � 9

P2\0 � "1a1¦Pr−0s# sinh"za1¦Pr−0s#

−1aza1¦Pr−0s sinh"a#

P2\1 � −"1a1¦Pr−0s# cosh"za1¦Pr−0s#

¦1a1 cosh"a#

P2\2 � 9

P2\3 � 9

P3\0 �
0

"0−Pr−0#s
"za1¦Pr−0s"Pr−0−0# cosh"a#

¦cosh"za1¦Pr−0s##

¦BiPr−0 sinh"za1¦Pr−0s##

P3\1 �
0

"Pr−0−0#s
"za1¦Pr−0s sinh"za1¦Pr−0s#

¦a"Pr−0−0# sinh"a#

¦BiPr−0 cosh"za1¦Pr−0s##

P3\2 � za1¦s cosh"za1¦s#¦Bi sinh"za1¦s#

P3\3 � za1¦s sinh"za1¦s#¦Bi cosh"za1¦s#

Qi\ j � Pi\ j ""i � 0\ 1 and 3#\ "j � 0\ 1\ 2 and 3##

Q2\0 �
Pr−0

"0−Pr−0#s
sinh"za1¦Pr−0s#

Q2\1 �
Pr−0

"Pr−0−0#s
cosh"za1¦Pr−0s#

Q2\2 � sinh"za1¦Pr−0s#

and

Q2\3 � cosh"za1¦Pr−0s#[

In the limit of s : 9\ equation "21# reduces to equation



H[H[ Bau:Int[ J[ Heat Mass Transfer 31 "0888# 0216Ð02300225

"17#[ In the limits of s : 9 and:or a : 9\ both the numer!
ator and denominator of equation "21# approach zero
and the numerical evaluation of equation "21# is sus!
ceptible to errors[ To alleviate this problem\ equation
"21# was expanded into a Taylor series in terms of s\

M � M9¦sM0[ "22#

M9 is the expression given in equation "17#[ Due to its
length\ M0 is not reproduced here[ When numerical
values of M were needed for small values of s\ expression
"22# was used instead of expression "21#[

The admissible complex growth rates\ s\ are located on
the curve MI"s# � 9[ The linear stability of the conductive
state at any given Marangoni number\ M\ with respect
to disturbances of wave number "a# is determined by the
sign of the real part of s obtained by solving the implicit
equations\ MR"a\ sR\ s0# � M and MI"a\ sR\ sI# � 9[

The possible existence of "sR\ sI# pairs such that
MI"a\ sR\ sI# � 9 and sI � 9 was investigated[ To this end\
for various wave numbers "a#\ the curves
MI"a\ sR\ sI# � 9 in the sRÐsI plane were plotted[ When
K � Bi � Bo � C � 9\ the only curve satisfying
MI"a\ sR\ sI# � 9 corresponded to sI � 9[ As the con!
troller gain K was increased above zero\ a second branch
of MI"a\ sR\ sI# � 9 that corresponds to sI � 9 appeared[
For example\ Fig[ 4 depicts the locus of sR and sI × 9
that satisfy MI"a\ sR\ sI# � 9 when Bi � Bo � C � 9\
Pr � 9[0\ K � 4 and K � 19 for wave numbers a � 9[0
and 0[ A mirror image of the depicted curve exists "but

Fig[ 4[ The locus of sR and sI curves that satisfy MI"a\ sR\ sI# � 9 is depicted in the sRÐsI plane[ Bi � Bo � C � 9\ Pr � 9[0 and K � 4
and 19[ Each point on the curve corresponds to a di}erent Marangoni number[

is not shown# for sI ³ 9[ The horizontal and vertical axes
correspond\ respectively\ to sI and sR[ The various points
along the graph correspond to di}erent values of the
Marangoni number[ A few values of M are indicated at
various points along the a � 0 curve[ Curves cor!
responding to a × 0 are located below the a � 0 curve[
The a � 9[0 is located in close proximity to the a � 9
curve[ When K � 4\ although complex roots do exist\ all
of them have a negative real part[ In other words\ all the
oscillatory modes decay in time[

As the controller gain\ K\ increases\ the curves
MI"a\ sR\ sI# � 9 move upwards[ Relatively large con!
troller gains have a destabilizing e}ect as far as oscillatory
modes are concerned[ For example\ controller gain
K � 19 destabilizes the no!motion state and introduces
oscillatory convection[ Witness that even when M � 9\
the real part of s is positive and the no!motion state is
non!stable with respect to oscillatory disturbances[

Similar plots of the locus of s were prepared for other
Prandtl numbers[ Figure 5 depicts the locus of sR and
sI × 9 that satisfy MI"a\ sR\ sI# � 9 when
Bi � Bo � C � 9\ Pr � 09 and K � 4 for wave numbers
a � 9[0 and 0[ A mirror image of the depicted curve exists
"but is not shown# for sI ³ 9[ The various points along
the graph correspond to di}erent values of the Mar!
angoni number[ A few values of M are indicated at vari!
ous points "solid circles# along the a � 0 curve "dashed
line#[ On the curves\ sR ³ 9 and the no!motion state is
stable with respect to oscillatory modes[
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Fig[ 5[ The locus of sR and sI curves that satisfy MI"a\ sR\ sI# � 9 is depicted in the sRÐsI plane^ Bi � Bo � C � 9\ Pr � 09 and K � 4[
Each point on the curve corresponds to a di}erent Marangoni number[

Figures 4 and 5 illustrate that although in the presence
of the controller\ complex s values are possible\ as long
as the controller gain is not too large\ they all have a
negative real part and the principle of exchange of stab!
ility is valid[ As the wave number "a# decreases\ the locus
of admissible "sI\ sR# shifts upwards[ This indicates that
in the presence of the controller\ disturbances with large
wavelengths are less stable than disturbances with shorter
wavelengths[ In other words\ oscillatory instability favors
long wavelengths[

To further investigate the possible evolution of oscil!
latory instabilities\ Figs 6 and 7 depict MI as a function
of sI when Pr � 9[0 and 09\ respectively[ In Figs 6 and
7\ Bi � Bo � C � sR � 9[ In Fig[ 6\ the wave number
a � 0[3 and the controller gains are K � 00 "solid line#
and 01 "dashed line#[ Similar curves were observed when
Pr ³ Pr� ½ 0[0[ In Fig[ 7\ the wave number a � 1 and
the controller gains are K � 7 "solid line# and K � 09
"dashed line#[ The admissible sI−s correspond to
MI � 9[ The curves always start at the origin "sI � 9\
the case of exchange of stability#[ In order to obtain a
bifurcation through an imaginary growth rate "oscil!
latory instability#\ the curves must intercept the MI � 9
axis at sI × 9[ For example\ an oscillatory instability
occurs in Fig[ 6 when K � 01 but not when K � 00[

For any given controller gain "K#\ there is a critical

wave number "a�# above which oscillatory instabilities
do not occur[ The wave number a� corresponds to the
conditions when the local minimum of the curve is tan!
gent to the MI � 9 axis[ For situations similar to the one
depicted in Fig[ 6 "Pr ³ Pr�# the critical wave number\
a�\ is determined by solving the simultaneous equations\

MI "a�\ sI# �
1MI "a�\ sI#

1sI

� 9 "23#

for a� and sI[
When Pr × Pr� "i[e[\ Fig[ 7#\ the tangent occurs at

sI � 9[ In this case\ MI"a�\ 9# � 9 for all a� and instead
of using the derivative

1MI "a�\ 9#
1sI

� 9\

M0"a�\ 9# � 9\ "24#

was used where MI is the O"sI# term in the Taylor series
expansion of M\ equation "22#[

Figures 8 "Pr � 9[0# and 09 "Pr � 09# depict MR as a
function of the wave number "a# when MI � sR � 9 and
Bi � Bo � C � 9[ The curves in Figs 8 and 09 depict the
values of the Marangoni number at marginal stability[

Figure 8 "Pr � 9[0# depicts marginal stability curves
when the controller gains are K � 00[48 "solid line# and
K � 00[7 "dashed line#[ Similar curves were obtained
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Fig[ 6[ MI"a\ sR\ sI# is depicted as a function of sI when K � 00 and 01^ Bi � Bo � C � sR � 9\ a � 0[3 and Pr � 9[0[

Fig[ 7[ MI"a\ sR\ sI# is depicted as a function of sI when K � 7 and 09^ Bi � Bo � C � sR � 9\ a � 1 and Pr � 09[
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Fig[ 8[ When K � 00[48 "solid line# and 00[7 "dashed line#\ MR is depicted as a function of the wave number "a#[ MI � sR � 9 and
Bi � Bo � C � 9\ Pr � 9[0[ The upper "heavy solid line# curve corresponds to exchange of stability "sI � 9# and K � 00[48[ The lower
curves correspond to bifurcation through imaginary growth rates "sI � 9#[

Fig[ 09[ When K � 00[4 "solid line# and 00[5 "dashed line#\ MR is depicted as a function of the wave number "a#[ MI � sR � 9 and
Bi � Bo � C � 9^ Pr � 09[ The upper "heavy solid line# curve corresponds to exchange of stability "sI � 9# and K � 00[48[ The lower
curves correspond to bifurcation through imaginary growth rates "sI � 9#[
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when Pr ³ Pr�[ Witness the existence of two families of
marginal stability curves[ The upper "heavy solid line#
curve corresponds to exchange of stability "sI � 9# and
K � 00[48[ The lower curves correspond to bifurcation
through imaginary growth rates "sI � 9#[ To explain the
signi_cance of Fig[ 8 the chain of events as the Marangoni
number increases along the dashed\ vertical line "a � 03#
is described[ The points D0\ D1\ and D2 denote the
intersections of this line with the marginal stability
curves[ When the Marangoni number is negative and
smaller than the value corresponding to point D0\ the
real part of the growth rate is negative and disturbances
with wave number a � 0[3 decay[ Along the segment
D0ÐD1\ the real part of the growth rate is positive and
oscillatory disturbances with wave number a � 0[3
amplify[ A negative Marangoni number occurs when the
~uid layer is heated from above[ The case of heating from
above is not considered in this paper[ As the Marangoni
number increases above the value that corresponds to
point D1\ disturbances of wave number a � 0[3 decay[
This situation persists until the Marangoni number is
increased above the value corresponding to point D2[ At
D2\ a non oscillatory loss of stability occurs[ The critical
Marangoni number corresponds to the global minimum
of the marginal stability curves when MR × 9[ Figure 8
illustrates that when K ¾ 00[48\ the heavy solid line
"sI � 9# determines the loss of stability and the principle
of exchange of stability holds[ When K × 00[5 "i[e[\
K � 00[7 in Fig[ 8#\ the stability curve that corresponds
to oscillatory modes crosses from the lower to the upper
half plane and loss of stability occurs through a bifur!
cation into oscillatory modes[ When K × 00[5\ the no!
motion state is unstable for all positive Marangoni num!
bers[ The oscillatory destabilization occurs at smaller
wave numbers "larger wavelengths# than in the case of
exchange of stability[

An example of the stability diagram when Pr × Pr� is
depicted in Fig[ 09 for the case when Pr � 09[ The heavy
solid line depicts the marginal stability line for the case
of exchange of stability "sI � 9# and K � 00[4[ The light
solid and dashed lines correspond to loss of stability
through imaginary eigenvalues[ When Pr × Pr�\ the mar!
ginal stability curve that corresponds to oscillatory
modes bifurcates from the curve of exchange of stability
"heavy solid line#[ At the intersection point between these
two curves\ sI � 9[ The magnitude of sI increases as one
moves away "to the left# from the intersection point[ The
critical Marangoni number is determined by the global
minimum of these two curves[ When K � 00[4\ the global
minimum corresponds to the oscillatory bifurcation\ and
it is lower "Mc ½ 056# than the minimum of the exchange
of stability curve "M ½ 084[2\ a ½ 2[5#[ In other words\
when K � 00[4\ oscillatory instability occurs at M ½ 056
and a ½ 9[8[ To prevent the occurrence of the oscillatory
instability one would need to reduce the controller gain[
For example\ when K � 00\ the loss of stability occurs at

M � 080[3 and sI � 9[ The minimum of the oscillatory
curve is then M ½ 190[8\ which is larger than the global
minimum[ When the controller gain is increased to
K � 00[5\ the marginal stability curve turns down and
crosses over to the lower half plane[ When K � 00[5\
oscillatory instabilities will manifest themselves even
when M � 9[ If one|s objective is to stabilize the no!
motion state\ one would maintain K ³ 00[

Calculations similar to the ones depicted in Figs 8 and
09 were carried out for Prandtl numbers 9[0¾ Pr ¾ 09
and Bi � Bo � C � 9[ When Pr ³ 09 and
K ³ Kc ½ 00[5\ the principle of exchange of stability pre!
vailed[ When Pr � 09 and K0 ³ K ³ Kc\ where K0 ½ 00\
loss of stability occurred to oscillatory modes[ When
K × Kc there is no critical Marangoni number and the
no!motion state is unstable at all positive Marangoni
numbers[

6[ Conclusions

It has been demonstrated for the _rst time that the no!
motion state in the MarangoniÐBe�nard problem can be
controlled[ Through the use of a simple control strategy\
one can postpone the transition from the no!motion\
conductive state to a time!independent motion[ The con!
troller delays loss of stability both in the case of a non!
deforming surface "Pearson|s modes# and in the case
of a deforming surface when very long wavelengths are
excluded[ From a practical point of view\ the exclusion
of very long wavelengths may not pose a problem since
such wavelengths may not be admissible in situations
when the ~uid is con_ned[ When the controller gains are
relatively large\ the controller destabilizes the no!motion
state and induces oscillatory convection[ These oscil!
latory modes can perhaps be suppressed through the use
of more sophisticated control strategies than the ones
employed here[ Moreover\ it is likely that by optimizing
the controller\ one could maintain a no!motion state at
higher Marangoni numbers than the ones reported here[

This paper focuses only on linear stability analysis\ and
it does not address the direction of the bifurcation and
the basin of attraction of the controlled state[ In some
circumstances\ it is possible that the loss of stability
would occur through a subcritical bifurcation and that
the basin of attraction of the controlled state will be
limited[ In other words\ subcritical loss of stability may
occur through _nite amplitude disturbances[ When a sub!
critical bifurcation occurs\ a nonlinear controller can be
used to render the subcritical bifurcation supercritical so
as to prevent premature loss of stability[ Yuen and Bau
ð3Ł demonstrated the feasibility of using such a nonlinear
controller in the case of a simple convective system[

The analysis assumed that the sensors and actuators
are continuously distributed[ This may not be essential
for the success of the controller[ In their work on the
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stabilization of RayleighÐBe�nard convection\ Tang and
Bau ð00\ 01Ł demonstrated\ both in theory and exper!
iment\ that it is su.cient to use a _nite number of sensors
and actuators to successfully control the ~ow[ Since on
Earth MarangoniÐBe�nard convection is signi_cant only
for very thin layers in which the length scale of the con!
vection is likely to be small\ the actuators will need to be
minute in size[ Although microfabrication technology
allows one to fabricate such actuators at a relatively
low cost\ the implementation of the controller may be
expensive[ The situation in microgravity is\ however\
quite di}erent[ In microgravity\ in the absence of buoy!
ancy\ Marangoni convection plays an important role in
deep ~uid layers[ Under these circumstances\ the
implementation of the proposed control strategy should
be both feasible and bene_cial[ It is interesting to note
that the same control strategy that delays the onset of
MarangoniÐBe�nard convection is also e}ective in sup!
pressing RayleighÐBe�nard convection[
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